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ABSTRACT
Malicious ads often use social engineering (SE) tactics to coax users
into downloading unwanted software, purchasing fake products
or services, or giving up valuable personal information. These ads
are often served by low-tier ad networks that may not have the
technical means (or simply the will) to patrol the ad content they
serve to curtail abuse.

In this paper, we propose a system for large-scale automatic dis-
covery and tracking of SE Attack Campaigns delivered via Malicious
Advertisements (SEACMA). Our system aims to be generic, allowing
us to study the SEACMA ad distribution problem without being
biased towards specific categories of ad-publishing websites or SE
attacks. Starting with a seed of low-tier ad networks, we measure
which of these networks are the most likely to distribute malicious
ads and propose a mechanism to discover new ad networks that are
also leveraged to support the distribution of SEACMA campaigns.

The results of our study aim to be useful in a number of ways.
For instance, we show that SEACMA ads use a number of tactics
to successfully evade URL blacklists and ad blockers. By tracking
SEACMA campaigns, our system provides a mechanism to more
proactively detect and block such evasive ads. Therefore, our results
provide valuable information that could be used to improve defense
systems against social engineering attacks and malicious ads in
general.

CCS CONCEPTS
• Information systems→ Online advertising; • Security and
privacy → Social engineering attacks; Web protocol secu-
rity; Malware and its mitigation.
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1 INTRODUCTION
The advent of the Internet has caused enormous changes to the
way products are advertised and has created a new multi-billion
dollar industry. Today, online ads are primarily distributed via large
ad networks, the most popular of which are controlled by a few
large Internet companies such as Google, Facebook, Twitter, etc.
However, the online advertising ecosystem also includes a myriad
of lower-tier ad networks, some of which are used by ad-publishing
websites as higher-revenue alternatives with weaker content re-
striction policies compared to more reputable ad networks.

Unfortunately, cyber-criminals have learned to take advantage
of online ads to target and exploit innocent victims. Malicious ads
often use social engineering (SE) tactics to coax users into down-
loading unwanted software, purchasing fake products or services,
or giving up valuable personal information. These ads are often
served by unpopular, low-tier ad networks that may not have the
technical means (or simply the will) to patrol the ad content they
serve to curtail abuse. For instance, recent studies have analyzed
malicious ads distributed on specific categories of publisher sites,
such as free video streaming websites [33], or dedicated to specific
attack vectors, such as tech support scams [30] or survey scams [24].
Others have studied how malicious ads are delivered or how they
can be detected using statistical features [28, 40] (related work
is discussed in more details in Section 7). However, we are not
aware of studies that specifically look at identifying and tracking
Social Engineering Attack Campaigns delivered via Malicious Ads
(SEACMA) independently from the publishing sites or specific at-
tack vectors, including leveraging the SE visual components to
identify SE attack campaigns and characterize attack trends.

In this paper, we propose a system for large-scale automatic
discovery and tracking of SEACMA campaigns. Our system aims
to be generic and to study the SEACMA ad distribution problem
without being biased towards studying only specific categories
of ad-publishing websites or SE attacks. Using our system, we
find numerous SE ad campaigns that lead to concrete SE attacks.
As we will discuss later, the type of SE attacks we discover in
our measurements mostly belong to known attack categories (e.g.,
fake software, technical support scams, survey scams, etc.). It is
important to notice, however, that our main goal is not to uncover
new categories of SE attacks, but rather to discover and track the
SEACMA campaigns that lead to generic SE attacks and to study
the mechanisms used to deliver such attacks.

https://doi.org/10.1145/3355369.3355600
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Figure 2 presents an overview of our system, which we describe
in more details in Section 3. We start with a seed list of low-tier
ad networks that we manually compiled by scouting websites and
forums that discuss techniques for increasing ad revenue. Using an
existing web service, we “reverse” this initial list of ad networks into
a large list of websites that publish ads served from those networks.
Then, we leverage a custom built scalable crawler farm to visit these
websites and log detailed information about candidate SE attack
pages reached via ads published on those sites. As a next step,
we cluster similar candidate SE attacks into SEACMA campaigns
based on their visual components and filter out possible benign
content. We then input the remaining SEACMA campaigns into
a “milking” process, in which we track the ad campaigns through
time. For instance, we track how frequently changing domains
are used to evade URL blacklists, track the visual components of
the campaigns through time and collect the highly polymorphic
unwanted software distributed by some of the campaigns. Finally,
we analyze each of the observed SE ad campaigns to attribute them
back to the originating ad networks. This allows us to determine
which ad networks tend to serve the largest fraction ofmalicious ads
and to discover previously unknown ad networks involved in the
propagation of SEACMA campaigns. These new ad networks could
then be fed back into our system to further expand our visibility
into SEACMA campaigns.

The results of our study aim to be useful in a number of ways. For
instance, even though in 2016 Google announced that its Google
Safe Browsing URL blacklists would start protecting users from
social engineering ads [8], we show that malicious advertisers use a
number of tactics to successfully evade them. By tracking SEACMA
campaigns, our system provides a mechanism to more proactively
detect and block such evasive SE attacks. In addition, our system
captures detailed browsing logs related to visiting malicious pages
reached through SEACMA-relatedmalicious ads, including a screen-
shot of the social engineering attack vectors. Because SE attacks
have a critical visual component, collecting a record of how such
attacks are reached by users and rendered in the browser may allow
one to faithfully reproduce real-world SE attacks in a controlled
environment, for example as a way to improve users’ cybersecurity
awareness and training. To this end, we aim to make the dataset
of SE attacks collected during this study available to the security
research community.

In summary, we make the following contributions:

(1) We present a system for large-scale automatic discovery and
tracking of SEACMA campaigns, which allows us to study
SEACMA-related malicious ads and the SE attacks they lead
to. Our system aims to be generic, allowing us to study the
SE ad distribution problem without being biased towards
specific categories of ad-publishing websites or SE attacks.

(2) We implement a custom browser based on Chromium that
makes use of deep code instrumentation to accurately track
JS code execution and understand how attackers leverage (or
abuse) ad networks to distribute a variety of large SE attack
campaigns targeting different types of victims.

(3) We focus in particular on low-tier ad networks and measure
which of these ad networks are most likely to distribute
malicious ads and study how SEACMA campaigns attempt

(a) (b)

(c)

Figure 1: Example of SE attacks reached by clicking on a
transparent ad: (a) Publisher page; clicking anywhere on the
page will open a new tab (a popup ad) that is likely to redi-
rect the user to SE attacks. (b) SE attack 1 – Tech support
scam. (c) SE attack 2 – Malicious browser extension.

to evade existing defense mechanisms, such as popular URL
blacklists.

(4) Furthermore, we devise a method for continuously tracking
SEACMA campaigns over time, and to enumerate the URLs
used by the ads to redirect users to the SE attack pages. Our
results provide valuable information that could be used to
improve defense systems against SE attacks and malicious
ads in general.

2 BACKGROUND
The online ad delivery mechanisms are often complex and involve
many entities [36]. In general, online ads are served via ad networks.
To display and monetize ads, publisher websites typically include
a snippet of code provided by a chosen ad network within their
pages[9]. This code runs in the context of the publisher’s web page
and therefore has fine-grained control on how the page should be
modified to inject ads.

Ads injected by low-tier ad networks often operate in a non-
traditional way. For instance, instead of displaying a traditional
banner ad, the ad network’s code may inject an overlay transparent
<div> element that essentially implements a transparent ad cover-
ing the entire page. For instance, consider the example of Figure 11.
Wherever the user clicks on the page2, a new tab is opened pointing
to a randomly changing ad domain, such as wduygininqbu[.]com,
enynwkvdb[.]com, ewopxadcn[.]com, etc., which in turn may redi-
rect the user to a tech support scam, unwanted software3, or other
social engineering attacks (see Figure 1).

1hxxps://gomovies[.]li/trolls/ (URL edited to avoid accidental clicks)
2Note that only the first click after page load seems to follow this logic, in this particular
example.
3E.g., an extension called TheGameSearcher [12], which appears to have gained more
than 32,000 users before being removed by Google.
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Our analysis, which we performed using techniques described
later in this paper (see Section 3.5), found that the randomly chang-
ing ad domains mentioned in the above example all belong to a
single ad network, namely popads.net; this is likely a tactic used by
popads.net to evade ad-blockers.

Definition 1 – SEACMA ad. We define an SEACMA-related ad
(or SEACMA ad, for brevity) as a malicious online advertisement that,
when clicked on, redirects the user to a social engineering attack.

In the above example, the SEACMA ad is represented by a trans-
parent <div> ad (Fig 1a). The SE attack itself is in the content
shown to the user on the new tab - Fig 1b: a tech support scam
page, Fig 1c: a malicious extension download page. During our
study we have observed many other examples of such attacks. For
example, some landing pages contained text to lure the user to click
‘Allow’ on a browser push notification request by promising adult
content.(Fig 6e)

As seen in the previous example, SEACMA ads themselves may
use social engineering to increase their click-through rates. Trans-
parent ads are probably the most extreme example, in that the user
intends to click on desired content but is instead “tricked” into
clicking on and visiting pages that host SE attacks. Other examples
include popup ads that automatically replaced the visited page with
the advertised content, fake download buttons embedded in ad ban-
ners and other visually misleading components [31]. Nonetheless,
in our definition of SEACMA ads we focus mainly on the fact that
the ad directs the user to an SE attack page, rather than the visual
content rendered by the ad itself.

It is important to notice that SEACMA-related ads are a subclass
of the broader class of malicious online advertisements. For instance,
some malicious ads may lead the browser to drive-by malware
download attacks. Such attacks do not require any action on the
side of the user, because the browser is compromised and forced
to download and execute malicious software without any user
intervention. On the contrary, our focus is on ads that lead to SE
attacks, in which the landing page reached via an ad click uses
social engineering tactics to force the user into performing actions
that can lead to a security and/or privacy breach. Various SE attacks
we discovered during our study are presented in Section 4.3 and in
Appendix A.

Definition 2 – SEACMAcampaign. In some cases, the very same
(or almost identical) SE attack content can be reached via different ads
served by different low-tier ad networks and published on a diverse set
of websites. We define an SEACMA campaign as the set of SEACMA
ads that point to the same SE attack content.

In Section 4.3, we show that this type of SEACMA ads appear
on a large variety of website categories, with some of the publisher
websites reaching popularity rankings above 1000.

One common feature among SEACMA campaigns seems to be
that they are often intrusive, as they are typically implemented
using pop-up or pop-under ads. This intrusiveness helps the ads
to counter-act the “ad blindness” effect [23], thus maximizing ad
revenues. Such ads may be particularly effective on mobile device,
where the limited size of the user interface can trick the user in
believing the visible ad page is the only page open on the browser.
Furthermore, aggressive JavaScript code that attempts to “lock” the
browser on the current page is often used as a strategy to force
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Figure 2: System Overview

inexperienced users into performing undesired actions and falling
for SE attacks.

Willingly or not, publisher sites are accomplices in the delivery
of this type of malicious ads, in that they allow third party code (the
ad networks’ scripts) to gain full control of their pages in return
for higher ad revenues than what may be gained from reputable ad
networks.

3 SYSTEM DETAILS
In this section, we present each module of our system in detail
following the system overview depicted in Figure 2.

3.1 Ad Networks and Publisher Sites
To discover SEACMA campaigns, we take an active approach that
requires analyzing websites that are likely to advertise (willingly
or not) SE attacks. To this end, we first need to assemble a seed list
of such publisher websites for crawling.

Our personal experience, as well as prior research [33], suggests
that SEACMA ads are commonly found on websites that offer illicit
content, such as pirated movies and TV shows, or live sport stream-
ing services that violate copyright laws. However, in our study we
aim to take a more generic approach that is not biased towards
specific publisher websites. Taking a step back, an initial analysis
of illicit streaming sites suggests that it’s not the publisher sites
themselves that are directly responsible for distributing malicious
ads. Rather, such websites simply include ads distributed by low-tier
ad networks, with little control on what ads will actually be offered
to their visitors.

To find a seed list of commonly used low-tier ad networks ①,
we manually scouted websites that discuss how to maximize ad
revenues [3, 6]. Overall, we compiled an initial list of 11 different
ad networks (reported later in Table 3). By creating temporary
publisher accounts with these ad networks (without ever needing
to actually publish an ad) and by investigating a random set of
publisher web pages that used those ad networks, we obtained the
JavaScript (JS) code snippets needed to include ads from each of
the 11 ad networks.



IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Phani Vadrevu and Roberto Perdisci

Then, by analyzing the collected JS code snippets, we imme-
diately noticed that most of these ad networks heavily obfuscate
their code and frequently change the domain names from which
the JS code is fetched, in order to evade detection by ad blocker
extensions. However, we found that it was possible to identify a
number of invariant features, such as a specific URL path name,
URL structure, or JS variable names that are reused across different
versions of JS code snippets belonging to the same ad network.
Therefore, we manually collected a number of invariant features
for each of the 11 ad networks in our initial list. We then leveraged
publicwww.com, a legitimate source code search engine, to “reverse”
these features and obtain a list of publisher websites that embed
code having those invariants. In this way, we were able to obtain
93,427 distinct publisher websites that use one or more of the 11
low-tier ad networks in our list and that are therefore likely to host
some malicious ads ②. For each ad network, it took us only about
15 minutes of effort to both derive an invariant pattern and to find
the list of associated publisher websites.

3.2 Crawler Farm
To enable the discovery of SEACMA campaigns at scale, we built
a highly efficient crawler farm ③. We designed each crawler as a
container-based application, allowing us to execute many crawler
replicas in parallel. Each crawler in the farm houses a web browsing
module, which includes an instrumented full browser capable of
logging very detailed information about how web content (includ-
ing JS code) is rendered, plus custom browser automation code that
allows for piloting the browserwhile avoiding being blocked by anti-
automation scripts. Our browser module operates in headless mode
and automatically mimics different browser/OS combinations, in-
cluding mobile operating systems (e.g., screen size and other system
properties are adjusted according to the mimicked system). Each
crawler visits a selected publisher website and navigates around
the site’s content by generating mouse clicks, including interacting
with ads. During this process, the browser is instructed to also
collect screenshots of the visited pages.

Our browsing modules consist of a Docker container running a
headless instrumented version of the Chromium browser. Specif-
ically, our Chromium browser consists of a re-implemented and
enhanced version of JSgraph [26], which we ported over to a re-
cent Chromium release (64.0.3282) and augmented with automated
instrumentation techniques for tracking all JS API calls across the
entire Blink-JS bindings (whereas JSgraph [26] can only log a small,
manually-instrumented set of JS API calls). All interactions with
this headless browser are commandeered with the help of a custom
Chrome DevTools API client that we developed to avoid anti-bot
checks implemented by some of the ad networks to detect existing
automation tools, such as Selenium WebDriver [15].

Via pilot experiments, we observed that many ads, including
SEACMA ads, were tailored to the kind of operating system or
browser being used. So, in order to collect a diverse set of SEACMA
ads, we programmed our crawlers to visit each publisher website
by making use of multiple user agent strings. Specifically, we sim-
ulated the following Browser / OS combinations: Chrome 66 on
macOS, Chrome 65 on Android, IE 10 on Windows, and Edge 12
on Windows. In the case of Chrome 65 on Android, we also made

use of Chrome’s own device emulation system, which is part of
DevTools [7]. This allowed us to also accurately emulate other mo-
bile browser properties, such as screen size, besides the user agent
string. We acknowledge that while replacing the user agent string
may not be sufficient in some cases to elicit a targeted ad (e.g., the ad
network may implement more sophisticated browser fingerprinting
techniques), in practice we found it to be very successful.

When visiting a publisher website, each crawler attempts to
discover and interact with potential SEACMA ads by issuing mouse
clicks (or tap gestures, in the case of the emulated mobile browser).
To identify what elements to click on, we developed a number of
heuristics based on practical experience. For instance, the crawler
identifies elements such as images and iframes, computes their
rendering size on the page and sorts them in descending order of
their size. Larger images and iframes typically contain the most
visually appealing content, which is often associated with event
listeners injected by the ad networks. Furthermore, in many cases,
as in the example presented in Section 2, the ad network code will
listen for clicks anywhere on the page. Our heuristics also cover this
case, since clicking on any image triggers the expected ad behavior.

The crawler performs a number of clicks per page, until a given
(tunable) number of ads have been triggered and the potential
resulting SEACMA ad and SE attack have been recorded. As a
heuristic, we assume to have exercised an ad if a click triggers the
opening of a new tab pointing to a third-party URL, or if the current
tab navigates away from the current website (i.e., it loads a web
page with a domain that is different from the publisher website).
Again, while these heuristics are not perfect and can clearly capture
content not related to SEACMA ads, they do work in a large number
of cases, especially when SEACMA ads are in fact present on the
page, as for the example in Section 2. It is also worth noting that
all the logs captured during this phase are post-processed to filter
out non-SEACMA ads (see Section 3.3).

At every crawler click, we record a screenshot and full URL of
both the publisher page we clicked on, as well as the opened third-
party page. Furthermore, our instrumented browser continuously
records fine-grained details about events internal to the browser,
such as calls to any JS API, all JS code compiled and executed by
the browser, all visited URLs (including any redirections), etc.

Many low-reputation publisher websites tend to be “greedy”
and include code from multiple ad networks. Often, this results
in multiple ads being associated to the same elements in a page,
which may be activated in sequence (one per user interaction) to
maximize ad revenue. Therefore, whenever we detect that a click at
a particular location on the page has triggered an ad, we repeat the
same action a (tunable) number of times, in an attempt to trigger
additional ads from different ad networks.

After each interaction with the publisher site (if the browser nav-
igates away from the initial page) we simply re-open the browser,
re-load the page and interact with the next candidate element in our
list of images and iframes to be clicked. We terminate the analysis
of a given publisher site when we run out of elements to click on,
reach a maximum number of interactions with the page, or exceed
a tunable time-out. We apply these heuristics to strike a balance
between the depth at which we analyze a page and scalability, since
we have a large list of different publisher pages to explore.

publicwww.com
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Implementation Challenges and Solutions It is well known
that some browser automation tools such as Selenium WebDriver
and Phantom JS can be easily detected by existing anti-bot JS li-
braries [5, 17]. To implement a stealthier automated browser, we
therefore decided to leverage Chromium’s DevTools protocol, which
enables a fine-grained and transparent control of the browser. How-
ever, even using our custom DevTools client, we were initially un-
able to properly mine ads from a few target ad networks. We inves-
tigated these problematic cases by reverse engineering the JS code
provided by the ad networks. This made us realize that Chromium
DevTools, when active, sets navigator.webdriver property to in-
dicate that the browser is being automated. This was being checked
by ad networks’ code to detect browser automation. We therefore
further instrumented the browser source code to remove this fea-
ture, making our DevTools custom client stealthy.

We also noticed that a couple of ad networks in our seed list
(namely, Propeller and Clickadu) respond to ad requests from our in-
stitution’s machines, Tor exit nodes, and Amazon AWS IP ranges dif-
ferently, compared to ads served to residential IP addresses. Specifi-
cally, we empirically observed that these ad networks seemed to
never serve SEACMA ads (instead providing only benign ad con-
tent), when visiting the publisher sites from non-residential IP space.
To work around this obstacle, we deployed multiple instances of
our crawler on three different laptops, which we then connected
to residential networks for a few days. This allowed us to collect
a significant number of SEACMA ads from those ad networks as
well.

Many SE attacks are quite aggressive in the way they capture
users’ attention. For instance, the landing pages reached via SEACMA
ads often try to keep their tab “locked” to the screen. If the user tries
to navigate away from the tab, the SE page may call the alert() JS
API or use other tricks to make it very difficult for the user to leave
the page. Among the techniques used for “locking” the page, we
found that JS modal dialogues, repeated authentication dialogs, or
onbeforeunload event handlers were the most common. In case
when the SE page displays attacks such as tech support scams or
fake anti-virus alerts, these page locking tactics may make the user
believe something is actually wrong with their machine and thus
steer them towards actions they might not otherwise take. As for
our browser automation code, these tactics cause problems to being
able to automatically taking screenshots and being able to navigate
away from the page to mine more ads. To avoid these issues, we
instrumented the browser source code that handles all JS modal di-
alogs, authentication dialogs and onbeforeunload event handlers
to bypass these page locking tactics.

3.3 Discovering SEACMA Campaigns
After crawling the entire list of publisher websites, our next task
is to discover SEACMA campaigns and filter out irrelevant ads.
To do this, we leverage a key trait of SEACMA campaigns: the
landing pages reached by clicking on SEACMA ads present the
same (visually identical or very similar) SE attacks to the user, but
are hosted under frequently changing domain names. The main
reason for this is clearly to evade URL blacklists. Conversely, benign
ad campaigns have no incentive to frequently change their domains.

Before beginning the clustering process, we first extract the SE
attack screenshots obtained from crawling the publisher websites
(see step ④). We then compute a perceptual hash, specifically a
128 bit difference hash (dhash) [11], on all these screenshot images.
Perceptual hashing is often used to efficiently find near-duplicate
images [39] and for reverse image search (e.g., as in TinEye), because
very similar images tend to produce similar perceptual hashes.

For each screenshot, we also extract the effective second level
domain4 (e2LD) from the URL of the page on which the screenshot
was taken. This allows us to obtain a set of distinct (dhash, e2LD)
pairs, on which clustering is applied (see step ⑤). To cluster them,
we define the distance function between such pairs to be the Ham-
ming distance between the dhash values. For instance, given two
distinct pairs si = (dhashi , e2LDi ) and sj = (dhashj , e2LD j ), we
measure the Hamming distance between the respective 128 dhash
bit strings, d(si , sj ) = dist(dhashi ,dhashj ). Then, to cluster the
pairs we use DBSCAN, setting the algorithm parameters eps = 0.1
andMinPts = 3 by tuning them via pilot experiments.

Finally, we apply a filtering process to the clustering results, to
discard clusters that are unlikely to be related to SEACMA ads.
Given a cluster, Ck , we filter it out if its total number of distinct
domains: |{e2LD j | e2lD j ∈ Ck }| is less than a tunable threshold
θc (we set θc = 5, in our experiments). This is motivated by the
observation discussed above, that SE ad campaigns typically host
visually similar SE attacks on many different domains, to evade
static URL blacklists. After filtering, each of the remaining clusters
represents a different candidate SEACMA campaign.

3.4 Ad Loading Process Reconstruction
The next two steps in our analysis (see Figure 2, steps ⑥ and ⑦)
are to continuously track the discovered SEACMA campaigns and
attribute back the related SEACMA ads to a specific ad network.
For both steps, we need an additional analysis component: a de-
tailed reconstruction of the browser-internal events involved in the
ad loading and landing page delivery process, which we describe
below.

Our main goal is to reconstruct fine-grained information about
the sequence and relationship between all URLs involved in the
process of (1) displaying an SEACMA ad on the publisher page and
(2) loading the SE attack after the interaction with an ad. While pre-
vious research on malicious ads [24, 28, 30] mostly focused on URL
redirection chains obtained by analyzing HTML, JS source code, and
network logs, this is not sufficient in our case. For instance, during
our study we noticed that it is very common for ad networks to use
obfuscated JavaScript code in order to make it difficult for others to
block their ads. This obfuscated ad delivery code often initiates page
redirections in complex ways and can easily suppress the referrer
URL from subsequent HTTP requests (e.g., this could be done by
leveraging HTML referrer policies [21]). In general, we observed
that there exist a variety of ways in which these ad loadmechanisms
can take place, including different types of HTTP redirect [10], us-
ing Meta Refresh [20], JS-based navigations via window.location,
history.pushState and history.replaceState,
addEventListener, setTimeout etc.

4We use Mozilla’s Public Suffix List: publicsuffix.org

publicsuffix.org
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To get around these difficulties, we leverage our instrumented
browser (an enhanced re-implementation of JSgraph [26], porting
the code to a more recent version of Chromium - 64.0.3282) to
dynamically track JavaScript execution and record the entire set
of URLs used to load a SEACMA ad and SE attack content from
inside the browser, including all URLs required to load third-party
JS code involved in the rendering of the ad. This is necessary to
enable attributing a specific SEACMA ad back to the specific ad
network that served it in the first place (see Section 3.6). Essentially,
in a way analogous to JSgraph [26], our fine-grained browser logs
allow us to start from an SE attack page (the final landing page
reached after clicking on a SEACMA ad) and build a backtracking
graph that reveals all URLs that were involved in publishing the ad
and reaching the attack page. For an example, see Figure 3.

3.5 Tracking SEACMA Campaigns
We now discuss how we track SE ad campaigns ⑥.

As mentioned earlier, SE attacks reached from SEACMA ads
are often hosted on throw-away domains that tend to last for only
a short time (on the order of hours to few days). However, while
analyzing the ad loading process of SEACMAcampaigns, we noticed
that there often exists an “upstream” domain in the ad-loading
URL sequence which tends to last a lot longer. This is akin to
malicious traffic distribution sites discovered in studies about the
dark web [27]. There is a reason for why malicious advertisers may
want to use this type of architecture. For the advertiser, there is
always a risk of the SE attack domains getting blacklisted. If the
SE attack domains are frequently blocked, it may be difficult for
the advertiser to continuously update the ad network about these
changes. Even if updated URL information can be propagated to
the ad network in an automated way, there might be a time lag
before the new domains come into effect, depending on how the ad
network is implemented. This could also happen due to a variety
of complications that are involved in the ad distribution process,
such as ad exchange networks and ad syndication [22]. In other
words, there could be a period of time during which visits to the
SE attack pages may be blocked, thus causing revenue loss for the
malicious advertiser. Injecting a level of indirection is a mitigation
to this potential issue.

Unfortunately, while the URLs of SE attack pages do get blocked
by blacklists such as Google Safe Browsing (GSB), during our study
we noticed that their upstream URLs are not typically blocked (at
least not as promptly) by GSB. Furthermore, via pilot experiments
we observed that in most cases we can reach fresh (not blacklisted)
SE attack page URLs by simply re-visiting the upstream URL for the
related ad campaign, without having to interact with the publisher
page or the ad networks. We refer to these upstream URLs as the
“milkable” URLs of a SEACMA campaign.

As an example, Figure 3 shows how we can identify a milkable
URL for a scam campaign we discovered during our experiments.
The figure depicts all the URLs involved in the process of loading
a Technical Support Scam SE attack on a Spanish sports streaming
website (verbeinlaliga[.]com). Besides the publisher site, there
were three other domain names involved in leading to the attack.
Our ad attribution analysis (to be described in Section 3.6) revealed
that the second domain in the chain, nsvfl7p9[.]com, belonged
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to the AdSterra ad network. The final URL, hosted on live6nml
d10[.]club, delivered the actual SE attack content. After an hour,
this URL became unreachable. However, at this time, querying
the “upstream” findglo210[.]info URL led to another domain,
namely relsta60[.]club, that contained the same SE attack with
same URL pattern (see Figure 4). A little while later, the findlog2
10[.]info URL led to 99cret1040[.]club domain containing the
same attack and so on and so forth. Because of this behavior, we
consider the findglo210[.]info URL as a milkable URL.

In order to automatically extract these milkable URLs, we first
analyzed the backtracking URL graphs mentioned above for each
of the SEACMA campaigns. All these graphs have the URL of the
SE attack page as their last node (i.e., the start of the backtracking).
Starting from the attack page URL, we navigate through the back-
tracking graph, until we reach a node associated to a URL that is
not hosted on the attack page’s domain. We consider such URLs as
candidate URLs for milking.

We then point our crawler to the candidate URLs and capture a
screenshot of the landing page they lead us to. Finally, we compare

5Parts of URLs in the figure have been replaced by "*" and "..." to conserve space
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the newly “milked” screenshots with our previous collection of
screenshot for the SE campaigns. If, given a candidate URLUm and
the landing page pm it leads to, we find a close match between
the screenshot taken on pm and the previous screenshots from
the SE ad campaign from whichUm was derived, we say thatUm
is “milkable,” and periodically visit it to track new domain names
used to distribute the SE attack served by the campaign. This entire
process is fully automated.

We setup our crawlers (Section 3.2) to visit each milkable URL
once every 15 minutes. Every time we discover a previously unseen
SE attack URL (i.e., the landing page with a screenshot similar to
previous SE attacks), we store the URL and immediately check it
against Google Safe Browsing, to determine how quickly these
new attack URLs are typically blocked. Furthermore, using our
instrumented browser, we also perform simple interactions with the
SE attack URL (e.g., mouse clicks). If this results in a file download,
we save the file and upload it to VirusTotal, to obtain anti-virus
detection results. Overall, we discovered that the vast majority
of milked SE attack URLs, including URLs related to malicious
software, are not initially blocked by GSB. We discuss our findings
in detail in Section 4.5.

3.6 Discovering New Ad Networks
Our seed list of publisher websites was obtained by “reversing” an
initial list of low-tier ad networks (see Section 3.1). However, visit-
ing a publisher site on the list does not guarantee to yield ads from
one of those ad networks. Like most websites, the publisher web-
sites in our list are dynamic and their content may change in time.
This includes the fact that these websites may at some point adopt
new ad networks, in alternative to the ones we initially identified.
Furthermore, as mentioned earlier, these websites may host ads
from several different ad networks, to maximize revenue. There-
fore, when crawling these sites we do not have prior knowledge
of what ad network is involved in distributing the ads the crawler
will interact with.

To link an SE ad campaign to the ad networks that distributed its
ads, we implement an ad attribution process ⑦. For this, we simply
use the invariant patterns for each ad network such as specific URL
structures or JS variable names that we previously obtained (see
Section 3.1). For each URL in the ad loading and landing page redi-
rection process, we automatically check if it matches the invariant
pattern for any of the ad networks. If none of the URLs match any of
the patterns, we label that ad as “unknown” and leave it for manual
analysis. This allows us to discover new, previously unknown, low-
tier ad networks that have served SEACMA campaigns. These ad
networks could then be added to our initial seed list of ad networks
to further expand crawling and SEACMA campaign coverage (see
Figure 2).

4 MEASUREMENT RESULTS
To evaluate our system, we used five different Linux-based server
machines with 12-32 cores and 24-128 GB of memory per each
machine, running Ubuntu 16.04. On average, each crawler had
access to 1 core and 2 GB of memory.

In the following, we describe the setup of our measurement in-
frastructure and report on the SEACMA campaigns we discovered.

Notice that many of the SE attacks we discover in ourmeasurements
mostly belong to known attack categories (e.g., fake software, tech-
nical support scams, survey scams, etc.). However, it is important
to remember that our main goal in this paper is not to uncover new
categories of SE attacks, but rather to discover and track the ad cam-
paigns that lead to generic SE attacks and to study the mechanisms
used to deliver such attacks via SE ad campaigns. Furthermore, we
measure the number of SEACMA ads delivered by different ad net-
works, and show that SE attacks delivered via ads are often able to
evade existing defenses, such as the popular Google Safe Browsing
blacklist.

To facilitate future research, including research in the areas of SE
defense, malicious online ad detection and user security awareness
training, we are releasing all browser logs and screenshots related
to the SE attacks that we collected during our experiments. We
are also making available the source code for all components of
our system including the crawler, the instrumented Chromium
browser, the SEACMA campaign discovery module and the ad
attribution module. The code and data will be available here: https:
//github.com/phani-vadrevu/seacma

4.1 Crawling Setup
The list of 11 popular low-tier ad networks that we used as seeds
for crawling is shown in Table 3. By leveraging the source code
search engine PublicWWW.com, we queried for snippets of code
extracted from the the seed ad network scripts and were able to
obtain 93,427 distinct publisher websites that used those ad net-
works. As mentioned in Section 3.2, during pilot experiments we
realized that the Propeller and Clickadu ad networks don’t serve
SEACMA ads from non-residential IP space. Hence, we divided
this pool of websites into two datasets, a group of publisher sites
that did not appear to include Propeller and Clickadu ads and a
second group so sites that did. We visited each website with our
containerized automated browser and spent roughly two minutes
per session. We repeated the crawling using four different user
agents, to quickly mimic different platforms. We crawled publisher
sites from the first group from our institutional network, whereas
we crawled sites containing Propeller and Clickadu ads using three
separate machines (three common Linux-based laptops with In-
tel i5 processors) with residential Internet access. Specifically, the
first group consisted of 59,359 publisher sites, whereas the second
group (sites that hosted ads from Propeller and Clickadu) included
34,068 different sites. However, due to the limited bandwidth of
residential networks and hardware capacity of laptops we used, we
were only able to visit about 11,182 websites from the second group.
Therefore, overall, we interacted with 70,541 websites as part of
this experiment.

4.2 Milking URLs Setup
After crawling the publisher sites, we ran a clustering algorithm
on the screenshots of the landing pages to discover SEACMA cam-
paigns. The algorithm along with the parameters used is described
in Section 3.3. We next processed the URL backtracking graphs
belonging of SEACMA campaigns to obtain candidate URLs for
milking (see Section 3.5). We then ran a small pilot experiment to
ensure that each of these candidate URLs (paired with different

https://github.com/phani-vadrevu/seacma
https://github.com/phani-vadrevu/seacma
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User Agents strings for crawling) were useful milking sources. This
resulted in 505 distinct (URL, User Agent) pairs as milking sources.
We then began to milk these URLs for a period of 14 days. We
performed the milking using a set up similar to the web crawling
setup described earlier. Our system automatically interacts with
the SE attack pages and offloads all the milking data, including
screenshots, logs and downloaded files, to a file server. With this set
up, we were able to repeat a total of 505 milking sessions roughly
once every 15 minutes.

Every time one of the milking URLs led to a "never-before-seen"
domain hosting an SE attack, we added that domain to a list of
domains to be looked up using the Google Safe Browsing (GSB)
API. All new domains in our GSB lookup list were checked against
the GSB API every 30 minutes. Similarly, every time a new file
download was triggered by interacting with SE attack pages, we
immediately looked up the file hash against VirusTotal. If the file
was previously scanned, we simply stored the existing VirusTotal
report in our database. Then, at the end of our milking experiment,
we sent all unknown files to VirusTotal for first-time scanning.

4.3 Discovering SEACMA Campaigns
As described in the previous section, we have done the Crawling
Experiment to visit about 70,541 publisher websites while mas-
querading as various different User Agents. During this experiment,
clicks (or taps) with about 39,171 publisher websites resulted in
third-party landing pages (about 199,400 pages) being opened. In
all these cases, screenshots of the third-party pages were taken and
were input to a clustering algorithm as described in Section 3.3.
This resulted in 130 clusters. We then used various methods to
determine the ground truth for each cluster: (1) Visual inspection
of one of the sample images in the cluster. (2) Interaction with page
and page source code inspection. (3) Verification using external
sources such as Google Safe Browsing and VirusTotal. For many
attacks such as Chrome Notifications and Fake Lottery, the visual
inspection itself was enough to ascertain that the cluster represents
a SEACMA campaign (Appendix A). If a cluster did not appear to
represent a SEACMA campaign, we considered it to be a benign
cluster. Out of the 130 clusters we obtained, 108 clusters appeared
to be clearly representing various SE attack campaigns. Overall,
these campaigns included 11,341 unique domains of publisher sites
and 28,923 SE attack instances reached by clicking on the SEACMA
ads hosted on those publisher sites. Some screenshots related to
these SE attack campaigns we discovered are shown in Figure 5
and in Figure 6 in Appendix A.

Table 1 groups the SEACMA campaigns into different categories.
The table also shows the number of SE attacks seen for each cat-
egory in the second column. The number of distinct SE attack
domains (i.e. different landing pages) is shown in the third column,
whereas the number of campaigns that belong to this category is
shown in the fourth column. The fifth column shows the percent-
age of SE attack domains that have been blacklisted by Google
Safe Browsing (GSB). The final column shows the percentage of
SEACMA campaigns that have at-least one attack domain black-
listed by GSB. It is worth noting that many SEACMA campaigns
are not at all detected by GSB, though we manually confirmed that
the content they deliver is in fact malicious.

(a) Fake Flash Player

(b) Technical Support scam (c) Lottery Scam

Figure 5: Some discovered SEACMA campaigns

Category # SE
Attacks

# Attack
Domains

# SE
Campaigns

GSB Detection %
domains campaigns

Fake 16802 2370 52 15.4% 73.1%Software
Registration 2909 474 36 0% 0%
Lottery/Gift 4297 50 9 18% 66.7%
Chrome 3419 102 3 0% 0%Notifications
Scareware 1032 71 5 0% 0%
Technical 464 74 3 1.4% 33.3%Support

Table 1: SE Ad campaign statistics

The SE attack categories represented in Table 1 are briefly de-
scribed below:

(1) Fake Software: These campaigns contain attacks where fake
software is advertised as Java updates, Adobe Flash updates
or macOS media players. An example is shown in Figure 5a.

(2) Scareware: Scareware SE attacks are similar to the Fake Soft-
ware category. However, the SE tactic is different. Instead of
promoting the software as a fake video player update, the
user is scared into believing that their machine system is
currently infected with malware, for example.

(3) Technical Support Scam: Technical support scam attacks are
another popular category of SE attacks and have been studied
in [30, 34]. An example of this attack is shown in Figure 5b.
These are cross-channel attacks that make use of the tele-
phony channel to monetize the SE attack, by convincing the
user to reach out to a (fake) Microsoft (or Apple) support
center for assistance with their malfunctioning computer.
This is accomplished using various web features (such as
alert windows, print dialogs, etc.) to give the user the illusion
of their system being locked. Our system provides an auto-
matic real-time way to collect these scam phone numbers
and add to a blacklist to protect users.

(4) Fake Lottery: These SE attacks pretend to be lotteries or gift
cards that the user won. They will lead to a survey in which
user details are requested. These attacks are specific to mo-
bile platform and we have not observed them on desktop
platform. An example of such attacks is shown in Figure 5c.
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The survey scams to which users are redirected by interact-
ing with these SE attack pages were recently studied in [24].
Our system provides an automatic way of collecting the
gateways for such survey scams.

(5) Chrome Notifications: These campaigns are an example of
how SEACMA ads have evolved in time. In recent years,
Chrome has tried to curb the menace of obtrusive and ma-
licious advertising by using techniques such as an in-built
ad-blocker, strict ad policies etc. [4, 8] (see also Section 5).
To compensate for lost revenue, ad networks began to look
for newer avenues in advertising. One example of this is
the push notifications mechanism introduced in the recent
versions of Chrome (akin to push notifications on mobile
phones) [2]. First, an SE attack is used to lure the user in
allowing push notifications from a given landing page. From
then on, the user could be sent potentially malicious notifica-
tions even if the user never visits the SE attack page directly
again.

(6) SE Registration: This group of clusters represent networks of
websites that drive traffic to media, book, streaming and dat-
ing websites who are paying customers of these networks. In
doing this, they tend to use SE techniques. Usually, there is a
page containing a fake video player (as verified by the source
code) that pretend to play the movie that your are looking
for (based on the search term). After a couple of seconds it
stops and asks for the user to create an account in the adver-
tised site. Upon agreeing, the user will be re-directed to the
customer’s account registration page. Thus, by employing a
SE technique the users are enticed into creating an account
on other scam websites which are often accused of a number
of fraudulent credit card charges [13, 14, 18, 19].

Among the 130 clusters we obtained, 22 did not appear to be
directly related to SEACMA campaigns. After fully investigating
these 22 clusters, we were able to categorize them as follows:

• 11 of the 22 clusters represented parked domains (i.e. do-
mains that are expired) or inaccessible domains (due to coun-
try restrictions, some domains were not accessible from the
US). In both cases, the original content of the landing page
is replaced by placeholder content that would be similar
across multiple unrelated domains. Most of these domains
could be automatically filtered out using parking detection
algorithms [38]. We leave adding this automated filtering
component to future work.

• In 6 of the 22 clusters the landing pages had some stock im-
ages which when clicked on would redirect to different adult
websites. Due to the presence of these stock images in dif-
ferent domains, these pages ended up among the perceptual
clusters. However, we also noticed that in most cases, the
content that is promised is actually not present in the final
page. These pages are essentially a way to lure the user and
hence could be considered as another form of an SE attack.

• 4 clusters were related to two popular low-tier URL shorten-
ers: adf.ly and shorte.st. They show framed ads on their
own domains before redirecting the users to the target pages.
These services have registered many other domain aliases.
As a result, the ads tend to be displayed on many different

domains with similar page structure and hence tend to be
clustered together. Note that many of the ads displayed by
these services are in-fact malicious ( [30, 32]). Nonetheless,
we still consider them as “benign” in our work, because they
are associated with a URL shortener service, instead of be-
ing directly associated to a particular SE attack. Since the
number of such services is small, it is possible to whitelist
them.

• Finally, there was a spurious cluster formed from just 5 do-
mains. This was due to some technical issues relating to
improper loading of pages.

Using a publicly available API [16], we also tried to categorize
the publisher websites that host SEACMA ads. This information is
presented in Table 2. The table shows the categories of websites
that hosted the SEACMA ads that deliver the SE attack campaigns
we discovered. As can be seen, our system is highly generic and is
not restricted to any specific category of publishers.

Category # Publisher % of Total
Domains Domains

Suspicious 1632 15.81
Pornography 1396 13.52
Web Hosting 914 8.85
Entertainment 678 6.57
Personal Sites 667 6.46
Malicious Sources/Malnets 645 6.25
Dynamic DNS Host 475 4.60
Technology/Internet 415 4.02
Piracy/Copyright Concerns 404 3.91
Games 321 3.11
TV/Video Streams 282 2.73
Phishing 254 2.46
Business/Economy 186 1.80
Adult/Mature Content 178 1.72
Sports/Recreation 157 1.52
Education 154 1.49
Social Networking 112 1.08
Placeholders 108 1.05
Health 104 1.01
Society/Daily Living 101 0.98

Table 2: Top 20 categories of SEACMA ad publisher sites

According to PublicWWW.com, which also provided us with
the popularity ranking for each seed website, we found that 52
publisher websites were ranked among the top 10,000 most popular
domains, showing that some popular websites are also impacted
by SEACMA ads. Furthermore, 4 of the publisher sites were in the
top 1,000 most popular websites.

4.4 Ad network analysis
To link the SE attacks described above to the ad network responsible
for distributing them, we used the ad attribution process described
in Section 3.6. We were able to link a majority of the discovered SE
attacks to one of the seed 11 ad networks we started out with. Of all
the SE attacks we observed, 23,435 (81%) were associated with one
of those 11 ad networks. This is expected, since all publisher web-
sites that we crawled were known to host ads from those networks.
Table 3 shows the number of SE attacks that were distributed from
each of these ad networks. As mentioned in Section 3.1, some ad
networks use a large number of domains to host the JavaScript code
responsible for the loading the ads. On the other hand, some ad
networks use only a single domain for this purpose. The second col-
umn in the table shows these numbers. As we can see, ad networks

adf.ly
shorte.st
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such as RevenueHits and AdSterra tend to use many domains for
hosting their code. The third column shows the total number of
third-party landing pages that were opened as a result of clicks
made on ads from each of these networks. The fourth column de-
picts the number of SE attack pages that were among those landing
pages. The final column shows the percentage of SE attack pages
from each ad network. Somewhat surprisingly, for three of the ad
networks more than 50% of their ads led to SE attacks. These high
percentages suggest that some of these ad networks may be aware
of the fact that they are a vehicle for delivering SE attack, but may
not have the means to counter this type of abuse, or potentially
even choose to be complicit by intentionally allowing malicious
content to be reached through the ads they distribute.

Ad network # Ad network
domains

# Landing
Pages

# SE Attack
Pages

% SE Attack
Pages

RevenueHits 517 15635 3075 19.67%
AdSterra 578 15102 7644 50.62%
PopCash 2 9734 6256 64.27%
Propeller 4 8206 3470 42.29%
PopAds 3 4658 873 18.74%
Clickadu 10 2814 848 30.14%
AdCash 14 1698 955 56.24%
HilltopAds 46 1198 77 6.43%
PopMyAds 1 1194 103 8.63%
AdMaven 39 496 122 24.60%
Clicksor 4 276 12 4.35%
Unknown - - 5488 -

Table 3: SE attacks from each ad network

From Table 3, we can also see that 5,488 SE attacks were reached
through unknown ad networks. By manually analyzing 50 of these
SE attack logs from our system, we were able to discover a few new
low-tier ad networks that were not part of our initial ad networks
seed list. This analysis was very quick as our logs already contain
the backtracking graphs and associated JS code snippets for each
attack. It was just a matter of identifying URLs or JS code artifacts
that are similar to one another and investigating those using search
engines to find out what ad network is associated with them. We
found an ad network called Ero Advertising that appears to be
predominantly focused on advertising on adult-oriented websites.
We also discovered two other ad networks called Yllix and Ad-
Center, which were also distributing ads that led to SE attacks. Also,
using our logs, we were quickly able to identify the patterns in
their ad-serving source code that can be used to identify ads from
these networks. Using again the PublicWWW.com search engine,
we were able to find 8,981 new publisher websites that host ads
from these three networks. This entire process took less than one
hour. This shows that analyzing a small amount of “unknown” SE
attacks enables the enrichment of the publisher websites that can
be crawled to expand the tracking of SEACMA campaigns.

In addition to the experiments reported above, we also ran a
number of pilot experiments to test if SEACMA ads delivered by
the 11 ad networks in Table 3 could be blocked by the latest Chrome
release with the most recent AdBlock Plus extension. We found that
only ads provided by Clicksor did not display in this configuration.
All the other 10 ad networks continued to provide malicious ads,
as during our crawling experiments.

4.5 Milking
Using the setup described in Section 4.2, we milked the discovered
SEACMA campaigns during a 14-day period. This resulted in more
than one million browsing sessions. From this, we were able to
discover a large number of new domain names that were being
used for the SEACMA campaigns. These domains were completely
new, in that they were never observed during the initial crawling
and SEACMA campaign discovery. As explained previously, we
looked up each such domain in Google Safe Browsing (GSB) at an
interval of once every 30 minutes. We continued these lookups for
12 more days after the 14-day milking period. Then, after 2 months
of time, we performed an additional lookup for each of the domains
previously undetected by GSB, to measure any late additions to the
GSB blacklist. Table 4 summarizes the results. The second and the
third columns show the GSB detection rate for the domain at the
time of milking and at the latest lookup, respectively. The table also
shows the break up of the domains that were milked by category of
the SEACMA campaign. We observed that in many cases, soon after
a particular domain is added to the GSB list, the upstream milking
sources tend to redirect to new SE attack domains that are not
blocked by GSB. This is evidenced by the initial low detection rate
of GSB. However, even after two months time, GSB detected only
a small percentage (16.2% overall) of SE attack domains. For some
categories of SEACMA campaigns, such as “Technical Support”,
“Scareware” and “SE Registration”, GSB appears to be even less
effective than others. Furthermore, for those domains that were
finally detected by GSB, we measured how late GSB is in adding
these domains to the blacklist, when compared to harvesting the
domains by milking. On an average, GSB is more than 7 days slower
in detecting these SE attacks domains.

During the milking process, the automated crawler interacted
with the landing pages reached via SEACMA ad clicks. These in-
teractions often resulted in file downloads for SE attacks such as
“Fake Software” and “Scareware” categories. Overall, we were able
to milk 9,476 files in a 14-day period. We found a majority of these
files to be Windows (PE) and MacOS (DMG) executables. For all the
downloaded files, we looked up the VirusTotal database for previous
Anti-Virus scan reports. We discovered that only 1,203 files were
already known to VirusTotal. This is likely because the binaries
distributed by those SE campaigns tend to be highly polymorphic,
in an effort to evade anti-viruses. We then uploaded all the files to
VirusTotal for scanning and waited for a period of three months to
request a rescan. This allowed the AVs sufficient time to catch-up
on the signatures for the files. In the end, we found that more than
9,000 of the milked files were marked as malicious. More than 4,000
of them were flagged by at least 15 different Anti-Viruses. Trojan,
Adware and PUP were among the most popular labels associated
with the files we submitted.

5 DISCUSSION AND LIMITATIONS
For all ourmeasurements, we used a heavily instrumented Chromium
browser. The instrumentation has multiple purposes: (i) captur-
ing highly detailed logs that allow us to identify and study the
JavaScript code related to online ad networks; (ii) automatically
pilot user-like actions, such as clicks on pages elements likely re-
lated to ads; (iii) capture all types of URL redirections, including
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Category # Domains GSB-init GSB-final
Fake Software 1665 1.28% 18.59%
Technical Support 258 2.99% 4.70%
Scareware 45 0.00% 2.27%
SE Registration 47 0.00% 0.00%
Lottery/Gift 27 3.70% 55.56%
Total 2042 1.42% 16.21%

Table 4: Tracking SEACMA Campaigns (milking)

complex JS-driven redirections, to enable discovery of milkable
SEACMA campaign URLs and ad network attribution; and (iv) by-
pass common SEACMA ad “cloaking” techniques, to maximize our
ability to collect malicious ads and reach SE attack landing pages.
However, our anti-cloaking measures are based on a number of
empirically-derived rules. While they help us identify a large num-
ber of malicious ads and SE attacks that we would otherwise not
be able to witness, the anti-cloaking mechanisms we implemented
are by no means complete. Malicious ads (or ad networks) that
implement sophisticated browser fingerprinting and robot detec-
tion mechanisms may still be able to identify our crawlers and
thus avoid exposing the attacks they advertise. Furthermore, to
simulate different types of environments, such as different OS and
browser types (e.g., Edge on Windows), we only rely on changing
the browser’s User-Agent string, because recreating the same type
of heavy browser instrumentations we implemented on Chromium
on other architectures would require additional very significant
engineering effort. Nonetheless, simply changing the User-Agent
string and other parameters (e.g., screen size, resolution, etc.) al-
lowed us to discover SE campaigns that are clearly targeted to
different systems, such as mobile browsers, Microsoft Windows, or
macOS-based systems.

Among the 70,541 publisher websites that we crawled, only
11,341 (16%) were observed to host SEACMA ads. However, it should
be noted that visiting a publisher site will not always result in
displaying a SEACMA ad, even if the publisher site embeds code
from an ad network that commonly offers malicious ads. Because
of the dynamicity of online advertisements, one might need to
crawl the same publisher site multiple times, before encountering a
SEACMA ad. To improve scalability and limit the amount of traffic
or possible side effects on a given website, we crawl each publisher
site in a limited way. Specifically, we do this by avoiding multiple
visits to a publisher website with the same user agent. Therefore, it
is possible that we missed to observe some SEACMA campaigns
that are not frequently displayed to visitors. Also, while some of
the categories of SE attacks we we discovered have been studied
in the past [24, 30, 33, 34], our main contributions are in building
a system for discovering and tracking SEACMA campaigns in a
general way, studying how SEACMA ads and attacks are delivered,
attributing SEACMA campaigns to the responsible ad networks,
measuring the extent to which SEACMA campaigns evade current
defenses such as GSB, and providing insights that may help to build
more effective defenses against SE attacks.

Automation. While we attempted to automate the entire measure-
ment process to the maximum extent possible, there are still a few
manual steps that are difficult to avoid. These are: (1) the compi-
lation of seed list of ad networks, (2) identification of invariant

patterns for ad networks (used for both publisher site mining and
ad network attribution of SEACMA ads) and (3) discovery of un-
known ad networks (Section 3.6). Compilation of seed lists takes
a very short time, as there are only a limited number of popular
low-tier ad networks. We were able to compile this list in just a
few minutes. As already mentioned in Section 3.1, identification
of invariant patterns can also happen quickly. On an average, it
took us about 15 minutes to obtain an invariant pattern given an ad
network’s name. It is hard to automate this part as each ad network
uses its own methods of obfuscation or URL patterns. However, one
can easily find an invariance feature upon inspecting multiple code
snippets from different pages using this ad network. In total, we
estimate that we spent less than 5 hours on manual components of
this study.

Evasion of existing browser defenses. Google announced in February
2016 that its Google Safe Browsing service will stop SE attacks from
being displayed [8]. However, even three years later, our results
from Section 4.5 show that GSB is still very ineffective in detecting
SEACMA ads and SE attack pages. Earlier in 2018, Google further
stepped up the battle against SEACMA ads by rolling out an in-
browser ad blocking mechanism. This mechanism is intended to
block all ads on websites that are prone to show intrusive ads [4].
After several months into the deployment of our system we man-
ually tested the most recent Chromium browser releases against
some of the SE attack campaigns we discovered and verified that
most of the SEACMA ads remain unblocked. Similarly, popular ad
blocking plugins like AdBlock Plus appear to be very ineffective in
curbing these ads, as discussed in Section 4.4. One reason for this
is the continuous evolution of strategies used by low-tier ad net-
works to avoid detection and improve effectiveness. In Section 4.4,
we have already discussed how ad networks tend to use a large
number of domains to host their JavaScript code snippets, to evade
detection. Also, as discussed in Section 4.3, we observed SEACMA
campaigns that try to abuse the new browser notifications feature
recently introduced by the Chrome browser to deliver malicious
ads. Our system can be used to discover and track these new trends
in SEACMA campaigns and thus can help design new and more
effective defenses.

6 ETHICAL CONSIDERATIONS
In line with previous malvertisement studies [33], our crawling
experiments involved generating artificial clicks on ad-publishing
websites, which resulted in advertisers’ landing pages being loaded
and rendered in the browser. Because our main goal is to discover
and track SEACMA campaigns on a large scale, we argue that this
type of research would not be possible without actually rendering
and clicking on ads. Moreover, our crawler doesn’t even target any
specific "ad elements" for clicking. In most cases, our crawler inter-
acts with large native elements of the page. However, ad networks
set up click event listeners on many elements of the web page using
obfuscated JavaScript. So, our crawler invariably triggers the pop-
ups of landing pages regardless of where it clicks on the page. But,
we limited the amount of harmful affects on legitimate advertisers
by avoiding multiple visits to publisher websites using the same
user agent. We devised the milking experiments as explained in
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Section 3.5 in order to directly track SEACMA campaigns without
influencing the advertising costs.

Nonetheless, it is important to consider what the potential im-
pact on third parties may be. To this end we estimated the monetary
cost that legitimate advertisers may have incurred during our crawl-
ing experiments, and found it to be negligible. We proceeded as
follows: given a non-SE domain d (we exclude all SE attack domains
from this analysis), we considered all automated clicks produced
by our system that led to d , which allows us to estimate the cost
per domain that an advertiser (i.e., the third party who owns the
domain) might experience. We found that the worst case was a
page from a legitimate (i.e., non-SE) domain that was opened 1,209
times as a result of our clicks. Assuming a CPM (cost per thousand
ad impressions) of USD $4 (based on CPM estimates of low-tier ad
networks [1]), we estimate that the advertiser was charged about
USD $4.8 due to our experiments. In average (the above example is
the worst case in our data), there were about 9 clicks per legitimate
(non-SE) domain, resulting in about $0.04 per domain. This shows
that our crawling experiment and the proposed system ensured
minimal financial losses for legitimate advertisers while yielding
results that have multiple larger benefits for security research. Our
results show how various ad networks are responsible for distribut-
ing SE attacks, how we can discover new SECMA campaigns, how
existing URL blacklists can be enriched to include and protect from
many new web pages that contain SE attacks.

7 RELATEDWORK
Li et al. have developed MadTracer [28] to enrich the malvertise-
ment URLs that can be identified by blacklisting services such as
GSB, with the help of similarities in features such as URL patterns.
Unlike [28], our system can discover new SEACMA campaigns
irrespective of whether or not any of the URLs in the campaign are
detected by GSB. This is very important, as we have seen that many
SEACMA campaigns are very effective in completely evading GSB
(see Table 1). Similarly, Zarras et al. [40] measured malvertisements
after identifying them with the help of blacklists and JS-based dy-
namic analysis, which is again not very effective in the case of SE
ads. Nelms et al. [31] studied SEACMA ads via passive network
traffic analysis. They developed an SE software download detec-
tion engine based on features such as whether the downloads are
ad-driven, the reputation of the domains involved, etc. Unlike [31],
our system works actively by crawling for SEACMA ads and can
discover SEACMA campaigns by visual analysis irrespective of
whether or not they result in the download of malicious files.

Recent works such as [24, 30, 33, 34] focus only on specific types
or origins of SEACMA campaigns, such as survey scams, Windows
support scams, or SEACMA ads on live video streaming websites.
Our system is much more generic and is able to discover and track
previously unstudied SEACMA campaigns, including SE attacks
based on Chrome notifications (see Section 4.3). Supervised clas-
sification systems such as SpiderWeb [37], SURF [29], and Warn-
ingBird [25] focus on detecting malicious web pages based on the
redirection chains of URLs leading them to those pages. On the
contrary, our system is completely unsupervised and leverages
the visual similarity typical of SE attacks belonging to the same
SEACMA campaign.

Starov et al [35] have detected malicious web campaigns with
the help of Web Analytics IDs associated with malicious websites.
While [35] focuses on the similarity of web analytics being used by
the scammers, our work makes use of the similarity of the attack
content being hosted on different domains, regardless of whether
or not web analytics is being used by these domains. Due to this
difference, the two systems are orthogonal to each other and could
work in a complementary fashion. Our system also helps to study
SEACMA campaigns from the point of view of the ad networks. For
instance, we have identified, attributed and quantified the major
ad networks that are responsible for distributing SE attacks (see
Section 4.4) and we have built our system to enable the discovery
of future evolving ad networks.

8 CONCLUSION
In this paper, we have proposed a system for large-scale automatic
discovery and tracking of SEACMA campaigns, which we used to
study the SEACMA ad distribution problem without being biased
towards specific categories of ad-publishing websites or SE attacks.
Starting with a seed of low-tier ad networks, we measured which of
them are the most likely to distribute malicious ads and proposed a
mechanism to discover new ad networks that are also leveraged by
attackers to support the distribution of SE campaigns.

The results of our study can be useful in many different ways.
We showed that malicious advertisers use a number of tactics to
successfully evade URL blacklists.We also analyzed in detail some of
the largest SEACMA campaigns we observed and provided insights
into the tactics used to propagate SEACMA ads and attack pages.
Our results provide valuable information that could be used to
improve defense system against SE attacks and malicious ads in
general.
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A CATEGORIES OF SEACMA CAMPAIGNS
Figure 6 shows screenshots of content from various SE attack web
pages seen in SEACMA campaigns that we discovered. Many of
these images show how various elements such as OSX and Win-
dows’ GUI windows (Fig 6c, 6a, 6b), Facebook’s page style (Fig 6f, 6g)
and Chrome’s logos (Fig 6d) are copied to create trust in the users.
These images also show how visual inspection of these SE attacks
can be made. The fake OS windows rendered inside a browser, the
fake Chrome browser window (Fig 6d) and the fake comment boxes
(Fig 6f, 6g, 6h) are all tell-tale signs of an SE attack. The Push no-
tification attack screenshot (Fig 6e) shows how the SE attackers
are trying to lure the users to click on the "Allow" button of the
browser notification request message with the promise of adult
content by asking if the user is an adult or not (a message typically
shown on adult websites).
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(a) Scareware - Windows (b) Fake software - Java (c) Fake software - Mediaplayer

(d) Fake software - Flash (e) Browser push notifications

(f) Fake gift (g) Fake lottery (h) SE Registration

Figure 6: Screenshots of content from various SE attacks seen in SEACMA campaigns
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